Alkaloids from Delphinium staphisagria

J esús G. Díaz,* J uan García Ruiz, and Gabriel de la Fuente ${ }^{\dagger}$
Instituto de Bio-Orgánica "A. González", CSIC, Universidad de La Laguna, Ctra a Ia Esperanza 2, 38206, La Laguna-Tenerife, Spain
Received September 15, 1999

Abstract

Three new diterpenoid alkaloids, isoazitine (1), 19-oxodihydroatisine (2), and 22-0-acetyl-19-oxodihydroatisine (3), and eight known alkaloids-azitine (4), dihydroatisine (5), del phinine, neoline, bullatineC (14-acetylneoline), chasmanine, 14-acetylchasmanine, and the quaternary base atisinium chloride (7)were isolated from the aerial parts of Delphinium staphisagria. Structures of the new alkaloids were established mainly by 1D and 2D NMR spectroscopy, including ${ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and ROESY. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for alkaloids 4 and 5 are also reported.

The majority of the phytochemical studies of the Aconitum, Delphinium, and Consolida genera, the main sources of biologically active diterpenoid alkaloids, ${ }^{1}$ have been carried out with species from Asia, Europe, and North America. ${ }^{2}$ While searching for new diterpenoid alkaloids, we have investigated Delphinium staphisagria L. (Ranunculaceae), gathered in M orocco. The isolation and structure elucidation of several diterpenoid alkaloids from D. staphisagria were reported in previous papers. ${ }^{3}$ Further study of the constituents of this species has now resulted in the isolation of three additional new diterpenoid alkaloids, isoazitine (1), 19-oxodihydroatisine (2), and 22-O-acetyl-19-oxodihydroatisine (3), together with eight known alkaloids. Structures of the new alkaloids were elucidated on the basis of spectral evidence; the known alkaloids were identified by comparison of their spectral data with those in the literature.

Results and Discussion

I soazitine (1) was isolated as a resin, and the molecular formula, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}$, was deduced from HRMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) were very similar to those of atisine azomethine (azitine) (4), ${ }^{4}$ indicating the structural similarity of the two alkaloids. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals characteristic for a tertiary methyl group ($\delta 1.07$), an exocyclic double bond ($\delta 5.10$ and 5.04), an imine proton at $\delta 7.43$, and one secondary hydroxyl group (δ 3.61). This last should be located next to the exocyclic methylene group to account for the downfield shift of C-16 and C-17 ($\delta 156.6$ s and 109.7 t) compared to that of azitine (4) ($\delta 156.6 \mathrm{~s}$ and 109.1 t) and other related compounds. ${ }^{4}$ Three-bond correlations obtained from the HMBC experiment (Table 3) showed coupling between protons of the tertiary methyl group ($\delta 1.07$) and the imine carbon (at $\delta 169.0 \mathrm{~d}$), and between the imine proton and the methyl carbon (at $\delta 23.7 \mathrm{q}$) and the methylene carbon (at $\delta 55.5 \mathrm{t}$). Two-bond correlation was also observed between the imine proton and one quaternary carbon (δ 38.9 s). The downfield shift of this signal was attributed to $\mathrm{C}-4$ adjacent to a double bond in the form $\mathrm{N}=\mathrm{C}(19) .{ }^{5}$ In the HMBC experiment, methylene double bond signals at $\delta 5.10$ and 5.04 were correlated with the methine carbon resonances at $\delta 36.3$ and 77.0 (HMQC $\delta 2.34 \mathrm{br}$ s and 3.61 $\mathrm{br} \mathrm{t})$ and were therefore assigned to $\mathrm{C}-12$ and $\mathrm{C}-15$,

[^0]respectively, which corroborated the presence of the secondary hydroxyl group on C-15. Inasmuch as the H-15 signal ($\delta 3.61$) showed an NOE, with $\mathrm{H}-17 \mathrm{z}$ and $\mathrm{H}-14 \beta$ in the ROESY spectrum, $\mathrm{H}-15$ must be equatorial and α, with the $\mathrm{OH} \beta$ on $\mathrm{C}-15$. Thus, the structure of isoazitine was assigned as 1.
Compound $\mathbf{2}$ was obtained as col orless crystals, mp 221$223^{\circ} \mathrm{C}$. Its molecular formula $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}$ was deduced from the mass spectrum [m/z $359\left(\mathrm{M}^{+}\right)$] and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra revealed the presence of a hydroxyethyl group attached to nitrogen [${ }^{1} \mathrm{H}$ NMR $\delta 3.58$ $\left(\mathrm{H}_{21} \mathrm{a}\right), 3.51\left(\mathrm{H}_{21} \mathrm{~b}\right), 3.83\left(\mathrm{H}_{22} \mathrm{a}\right), 3.79\left(\mathrm{H}_{22} \mathrm{~b}\right)$ and ${ }^{13} \mathrm{C}$ NMR δ 50.8 and 61.7], one lactam keto group [IR $\nu^{\mathrm{NaCl}}{ }_{\max } \mathrm{Cm}^{-1}$ 1619 and ${ }^{13} \mathrm{C}$ NMR δ 176.8(s)], an exocyclic methylene group [${ }^{1} \mathrm{H}$ NMR $\delta 5.10$ and 5.04, each ($1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\mathrm{J}=1.5$ Hz) and ${ }^{13} \mathrm{C}$ NMR $\delta 110.1$ and 155.8], an angular methyl, and a secondary hydroxyl group. There was a close resemblance between compound 2 and the known diol dihydroatisine (5) in terms of ${ }^{13} \mathrm{C}$ NMR spectra (Table 2), indicating that $\mathbf{2}$ has a similar C_{20}-atisane skeleton. ${ }^{4}$ The three-bond correlation observed in HMBC (Table 4) between the tertiary methyl group at $\delta 1.15$ and the ketogroup at $\delta 176.8$ placed the carbonyl group at C-19. Acetylation of 2 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ at room temperature followed by chromatographic purification afforded the diacetate 6 and the monoacetyl derivative 3, the latter being identical with the new alkaloid discussed in the next paragraph. The ${ }^{1} \mathrm{H}$ NMR of 6 (Table 1) contained signals at $\delta 2.13$ and 2.02 and the ${ }^{13} \mathrm{C}$ NMR at $\delta 21.3(\mathrm{q}), 171.2(\mathrm{~s})$, 20.8 (q), and 170.7(s). The three-proton signal in 2 at $\delta 3.83$ and 3.79 (HMQC $\delta 61.7 \mathrm{t}$) and the 3.63 brt , (HMQC $\delta 76.7$ d), which moved downfield after acetylation ($\delta 4.34$ and 4.23 and $5.13 \mathrm{br} \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}$), were assigned to $\mathrm{H}_{2}-\mathrm{C}_{22}$ and $\mathrm{H}-15$, respectively. The existence of a secondary hydroxyl group at $\mathrm{C}-15 \beta$ was deduced as in 1. 19-Oxodihydroatisine (2) was prepared earlier by mild permanganate oxidation of isoatisine; 6 this is the first report of the natural occurrence of this alkaloid.
Comparison of the mass and ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ with the spectra of the synthetic diacetate 6 indicated that $\mathbf{3}$ had a hydroxyl group on C-15 and an acetyl group on C-22 (Table 1). The presence of the acetyl group at C-22 in 3 was corroborated by the long-range correlation observed in the HMBC between the protons attached to C-22 and the carbonyl carbon of the acetyl group.

1

$2 \mathrm{R}=\mathbf{O}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$3 \mathbf{R}=\mathbf{O}, \mathbf{R}_{1}=\mathbf{H}, \mathrm{R}_{2}=\mathrm{Ac}$
$5 \mathrm{R}=\mathrm{H}_{2}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$6 \mathrm{R}=\mathrm{O}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$

Experimental Section

General Experimental Procedures. Melting points, uncorrected, were taken on a Reichert Thermovar apparatus. IR spectrum: Bruker-IF S-55 spectrometer. Optical rotation: Per-kin-EImer-241 polarimeter, 1-dm cell. EIMS and exact mass measurements: Micromass Autospec spectrometer at 70 eV . NMR spectra: Bruker-AMX-400 or Bruker-AMX-500 spec-

Table 2. ${ }^{13} \mathrm{C}$ NMR Chemical Shift Assignments for Compound 1-6 ${ }^{\text {a }}$

carbon		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	41.4 t	41.3 t	41.4 t	$34.2 \mathrm{t}^{\mathrm{b}}$	$40.2 \mathrm{t}^{\mathrm{b}}$	41.4 t
2	20.2 t	20.1 t	20.1 t	20.0 t	23.3 t	20.0 t
3	37.6 t	39.6 t	39.6 t	$42.4 \mathrm{t}^{\mathrm{b}}$	41.3 t	39.6 t
4	38.9 s	41.8 s	41.8 s	32.9 s	33.6 s	41.7 s
5	47.6 d	50.1 d	50.2 d	46.9 d	49.6 d	50.3 d
6	19.6 t	19.5 t	19.6 t	19.5 t	17.3 t	19.4 t
7	31.0 t	30.9 t	31.0 t	$30.9 \mathrm{t}^{\mathrm{b}}$	$31.4 \mathrm{t}^{\mathrm{b}}$	31.4 t
8	36.4 s	37.5 s	37.6 s	37.3 s	37.4 s	36.9 s
9	38.4 d	37.9 d	38.0 d	38.0 d	39.5 d	39.1 d
10	37.6 s	36.0 s	36.0 s	42.5 s	38.0 s	36.0 s
11	28.4 t	28.9 t	28.9 t	$28.0 \mathrm{t}^{\mathrm{b}}$	$28.1 \mathrm{t}^{\mathrm{b}}$	28.8 t
12	36.3 d	35.9 d	36.0 d	35.9 d	36.3 d	35.9 d
13	26.3 t	26.4 t	26.4 t	26.0 t	26.3 t	26.2 t
14	27.0 t	27.2 t	27.2 t	$25.1 \mathrm{t}^{\mathrm{b}}$	27.6 t	26.9 t
15	77.0 d	76.7 d	76.7 d	75.8 d	77.0 d	76.7 d
16	156.6 s	155.8 s	155.8 s	156.6 s	156.7 s	150.4 s
17	109.1 t	110.1 t	110.2 t	109.1 t	109.8 t	111.1 t
18	23.7 q	23.0 q	23.2 q	25.9 q	26.5 q	23.1 q
19	169.0 d	176.8 s	174.6 s	60.7 t	60.7 t	174.5 s
20	55.5 t	54.4 t	54.5 t	165.8 d	$53.9 \mathrm{tb}^{\mathrm{b}}$	54.3 t
21		50.8 t	46.4 t		$60.2 \mathrm{t}^{\mathrm{b}}$	46.4 t
22		61.7 t	62.4 t		$57.9 \mathrm{t}^{\mathrm{b}}$	62.4 t

a Resonances for the acetate group in $\mathbf{3}$ and $\mathbf{6}$: $170.7 \mathrm{~s}, 20.8 \mathrm{q}$ $\left(\mathrm{C}_{22} \mathrm{Ac}\right)$ and 171.2 s , $21.2 \mathrm{q}\left(\mathrm{C}_{15} \mathrm{Ac}\right)$. Chemical shifts in ppm (δ) relative to TMS. Carbon multiplicities were determined by DEPT experiments. ${ }^{\text {b }}$ Indicates values that are revised from those re ported earlier. ${ }^{4}$
trometers; $\mathrm{CDCl}_{3} ; \delta$ values in parts per million relative to internal TMS; J values in $\mathrm{Hz} . \mathrm{Al}_{2} \mathrm{O}_{3}$ Merck (neutral, 200-300 mesh) and Schleicher and Schuell 394732 was used for column chromatography (CC) and TLC, respectively. Sephadex LH20, Pharmacia. Spots on chromatograms were detected with Dragendorff's reagent.

Table 1. ${ }^{1} \mathrm{H}$ NMR Data for Compounds $\mathbf{1 - 6} \mathbf{6}^{\mathrm{a}, \mathrm{b}}$

H	1	2	3	4	5	6
1a	1.70 m	1.81 m	1.79 m	1.69 br dt (13.2, 2)	1.90 br dd (13.5, 6.3)	1.79 m
1b	1.00 m	1.19 m	1.12 m	1.09 dd (15.7, 3)	1.14 m	1.15 m
2a	1.50 m	1.57 m	1.56 m	1.49 dd (13.3, 2.3)	2.40 m	1.57 m
2b	1.27 m	1.51 m	1.41 tt (13.5, 4.5)	$1.32 \mathrm{dt}(13.5,4.5)$	1.50 m	1.44 tt (13.5, 4.5)
3 a	1.49 m	1.80 m	1.78 m	1.45 ddd ($14,4.5,2.3$)	1.70 td (13.5, 5)	1.78 td (12, 7)
3 b	1.28 m	1.36 td (13.5, 4.5)	1.33 td (13.5, 4.5)	1.22 br td (13.5, 4.5)	1.40 m	1.39 td (13.5, 4.5)
5	0.98 m	1.69 m	1.15 m	$1.01 \mathrm{dt}(12.5,2.2)$	0.99 br dd (11.6, 4.5)	1.11 m
6a	1.56 m	1.68 m	1.68 m	1.60 m	1.52 m	1.66 m
6b	0.99 m	1.14 m	1.14 m	1.07 br dd (12.2, 3)	1.52 m	1.13 m
7 a	1.68 m	1.71 m	1.72 m	1.80 m	1.70 m	1.23 m
7b	$\begin{aligned} & 1.12 \mathrm{br} \text { dt } \\ & (13.5,3) \end{aligned}$	1.47 m	1.16 m	$1.13 \mathrm{dt}(13.5,3)$	1.16 m	1.23 m
9	1.58 m	1.74 m	1.73 m	1.81 dd (9, 2)	1.63 m	1.76 m
11a	1.72 m	1.73 m	1.74 m	1.75 m	1.60 m	1.82 m
11b	$\begin{aligned} & 1.36 \text { ddd } \\ & (12.5,7.7,2) \end{aligned}$	1.12 m	1.19 m	1.75 m	1.40 m	1.19 m
12	2.34 br s	2.32 br s	2.32 m	2.39 quint (3)	2.31 quint (2)	2.39 br s
13a	1.57 m	1.62 m	1.62 br t(13)	1.60 m	1.60 m	1.68 m
13b	1.57 m	1.46 m	1.48 m	1.60 m	1.39 m	1.52 m
14α	$\begin{aligned} & 2.14 \text { ddd } \\ & (15,11,4.5) \end{aligned}$	2.13 ddd (15, 11.5, 3)	2.15 ddd (15, 11.5, 3)	1.93 ddd ($15,11,4.5)$	2.06 ddd (15, 11.5, 3)	2.23 ddd (15, 11.5, 3)
14β	$\begin{aligned} & 0.92 \text { dddd } \\ & (15,11,7,2) \end{aligned}$	0.97 ddd ($15,12,7)$	0.97 ddd ($15,12,7)$	0.88 dddd ($15,11,7,2)$	0.86 br ddd ($15,12,7)$	1.12 m
15α	3.61 br t (2)	3.63 br t (2)	3.63 br t (2)	3.70 br t (2)	3.58 br t (2)	$5.13 \mathrm{br} \mathrm{t}(2)$
$17 z$	5.10 t (1.5)	5.10 t (1.5)	5.10 t (1.5)	5.10 t (1.5)	5.07 t (1.5)	5.04 t (1.5)
17 e	5.04 t (1.5)	5.04 t (1.5)	5.04 t (1.5)	5.04 t (1.5)	5.01 t (1.5)	4.91 t (1.5)
18	1.07 s	1.15 s	1.11 s	0.84 s	0.78 s	1.14 s
19a	7.43 br s			3.82 d (2.5)	2.45 br d (11)	
19b				3.82 d (2.5)	2.20 dd (11, 2.5)	
20a	$3.92 \mathrm{dt}(19,2)$	3.72 dd (13, 1.5)	3.76 dd (13, 1.5)	7.88 dd (4.5, 2.5)	2.77 br d (11)	3.77 d (14)
20b	3.42 dd (19, 3)	3.12 br d (13)	3.09 d (13)		2.57 dd (11, 2.5)	3.13 d (14)
21a		3.58 ddd (14.5, 6, 4.5, 3.6)	3.76 ddd (14.5, 6, 4.5)		2.45 m	3.78 ddd (14.5, 6, 4.5)
21b		3.51 ddd (14.5, 7, 4.5, 3.7)	3.44 ddd (14.5, 7, 4.5)		2, 45 m	3.46 ddd (14.5, 7, 4.5)
22a		3.83 ddd (11.5, 6, 4.5, 3.6)	4.31 ddd (11.5, 6, 4.5)		3.62 t (5.5)	4.34 ddd (11.5, 6, 4.5)
22b		3.79 ddd (11.5, 7, 4.5)	4.20 ddd (11.5, 7, 4.5)		3.62 t (5.5)	4.23 ddd (11.5, 7, 4.5)
Ac			2.02 s			2.02 s
Ac						2.13 s

${ }^{\text {a }} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$; assignments based on COSY and HMQC. ${ }^{\text {b }}$ Chemical shifts in ppm relative to TMS; coupling constants (J) in Hz .

Table 3. HMQC and HMBC NMR Data for Compounds 1, 4, and $\mathbf{5}^{\boldsymbol{a}}$

H	1		4		5	
	HMQC	HMBC	HMQC	HMBC	HMQC	HMBC
1a	41.5 t	3, 5	34.2 t	5, 9, 3	40.2 t	2, 3, 5, 10
1b	41.5 t		34.2 t	5, 9, 3	40.2 t	2, 3, 20
2a	20.2 t		20.0 t	1, 3, 5	23.3 t	
2b	20.2 t		20.0 t	10	23.3 t	
3 a	37.6 t	5	42.4 t	1, 2, 5	41.3 t	
3b	37.6 t	2, 19	42.4 t	2, 4, 5, 18, 19	41.3 t	1, 2, 4, 19
5	47.7 d	6, 7	46.9 d	4, 6, 20	49.6 d	4,10, 6
6a	19.7 t		19.5 t		17.3 t	
6b	19.7 t	7,10	19.5 t	7, 10	17.3 t	
7a	31.1 t	6, 8	30.9 t		31.4 t	
7 b	31.1 t	5,6	30.9 t	5, 6, 9, 14	31.4 t	6
9	38.4 d	1, 8, 14, 15, 20	38.0 d	1, 8, 10, 11, 14, 20	39.5 d	11, 20
11a	28.5 t	13	28.0 t		28.1 t	
11b	28.5 t	8, 12, 13, 16	28.0 t		28.1 t	10
12	36.3 d	9, 14, 15	35.9 d	$9,14,15,16,17$	36.3 d	
13a	26.3 t		26.0 t		26.2 t	
13b	26.3 t		26.0 t		26.3 t	
14α	27.2 t	7, 8, 13, 15	25.1 t	8, 13, 15	27.6 t	
14β	27.2 t	9, 13, 15	25.1 t	9, 13, 15	27.6 t	9
15α	77.0 d	7, 9, 14, 16, 17	75.8 d	7, 9, 12, 14, 16, 17	77.0 d	8, 9, 14, 16, 17
17z	109.7 d	12, 15, 16	109.1 d	12, 15, 16	109.8 t	12, 15, 16
17e	109.7 d	12, 15, 16	109.1 d	12, 15, 16	109.8 t	12, 15, 16
18	23.7 q	5, 3, 19	25.9 q	5, 3, 19	26.5 q	3, 4, 5, 19
19a	169.0 d	4, 18, 20	60.7 t	3, 4, 5, 18, 20	60.7 t	4, 5, 20
19b			60.7 t	3, 4, 5, 18, 20	60.7 t	3, 10, 19
20a	55.5 t	1, 9, 19	165.8 d	5, 9, 10, 19	53.9 t	5, 10, 19
20b	55.5 t	1, 5, 9, 19			53.9 t	1, 19
21a					60.2 t	
21b					60.2 t	
22a					57.9 t	21
22b					57.9 t	21

${ }^{\text {a }}$ Chemical shifts in ppm relative to TMS. C-multiplicities were established by DEPT experiment.
Table 4. HMQC and HMBC NMR Data for the Compounds 2, 3, and $\mathbf{6}^{\mathbf{a}}$

H	2		3		6	
	HMQC	HMBC	HMQC	HMBC	HMQC	HMBC
1 a	41.3 t	9	41.4 t	5, 9	41.4 t	5, 9
1b	41.3 t	5,10	41.4 t	20	41.4 t	20
2a	20.1 t	3	20.1 t	3	20.0 t	3
2b	20.1 t		20.1 t	3	20.0 t	3
3a	39.6 t	1, 5	39.6 t	2, 4, 5	39.6 t	5
3b	39.6 t	2, 4, 19	39.6 t	2, 4, 5, 18, 19	39.6 t	2, 4, 19
5	50.1 d	2, 20	50.2 d	6,20	50.3 d	6,20
6a	19.5 t	8	19.6 t	5	19.4 t	5
6b	19.5 t		19.6 t		19.4 t	
7a	30.9 t		31.0 t	6, 17	31.4 t	6, 17
7b	30.9 t	14	31.0 t	5, 6, 15	31.4 t	5, 6, 15
9	37.8 d	1, 12, 14, 15, 20	38.0 d	11, 15, 20	39.1 d	1, 14, 15, 20
11a	28.9 t		28.9 t		28.8 t	
11b	28.9 t	16	28.9 t	3, 8, 16	28.8 t	16
12	35.9 d	15, 14	36.0 d	14, 15	35.9 d	9, 15, 14
13a	26.4 t	8	26.4 t	11	26.2 t	
13b	26.4 t	16	26.4 t	11, 16	26.2 t	16
14α	27.2 t		27.2 t	15	26.9 t	15
14β	27.2 t	9, 13, 15	27.2 t	9, 13, 15	26.9 t	9, 13, 15
15 α	76.7 d	7, 9, 14, 16, 17	76.7 d	16, 17	76.7 d	7, 9, 14, 16, 17, СО (171.1)
$17 z$	110.1 t	12, 15, 16	111.0 t	15, 16	111.1 t	12, 15
17 e	110.1 t	12, 15, 16	111.0 t	15	111.1 t	2, 15, 16
18	23.0 q	4, 5, 19	23.1 q	4, 5, 19	23.1 q	4, 5, 19
20a	54.4 t	1, 10, 19	54.3 t	19	54.3 t	1, 10, 19
20b	54.4 t	1, 5, 10, 19	54.3 t	19	54.3 t	1, 5, 10, 19, 21
21a	50.8 t		46.4 t	19	46.4 t	19, 20, 22
21b	50.8 t		46.4 t	19	46.4 t	19, 20, 22
22a	61.7 t		62.4 t	CO (170.7)	62.4 t	21, CO (170.7)
22b	61.7 t		62.4 t	CO (170.7)	62.4 t	21, CO (170.7)
Ac			20.8 q		20.8 q	
Ac					21.2 q	

${ }^{\text {a }}$ Chemical shifts in ppm relative to TMS. C-multiplicities were established by DEPT experiment.

Plant Material. Del phinium staphysagria L. was collected in the spring (1985) outside Tetuán City, Morocco, by Dr. J ulián M olero Briones, B otany Department, F aculty of Phar-
macy, Universidad de Barcelona, where a voucher specimen (BC 808403) has been deposited.

Extraction and Isolation. Air-dried and powdered plant
material (aerial parts, 2.9 kg) were extracted with $80 \% \mathrm{EtOH}$ in a Soxhlet. After removing the solvent under vacuum, the ethanolic extract was treated with $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and filtered. The acidic solution was extracted with CHCl_{3} to give a crude material $(7.5 \mathrm{~g})$. This was adsorbed on 12 g of neutral alumina and subjected to flash chromatography over 110 g of the same adsorbent. Elution with hexane (3 L), hexane-EtOAc (1:1) (3 L), and $\mathrm{MeOH}(2 \mathrm{~L})$ gave $1.2,3.5$, and 1.95 g in the respective eluates. The material eluted with hexane gave a gummy residue, which contained no alkaloid. Crystallization of the material eluted with hexane-EtOAc (1:1) gave pure del phinine ${ }^{7}(2.6 \mathrm{~g})$, which was the major alkaloid isolated. The fraction eluted with $\mathrm{MeOH}(1.95 \mathrm{~g})$ afforded atisonium chloride $7^{8}(1.3 \mathrm{~g})$ after crystallization from EtOAc-MeOH (9:1). The acid aqueous phase was neutralized to pH 7 and extracted with CHCl_{3} to give a crude material (9.5 g). Chromatography of this residue on alumina, using gradient elution with hexaneEtOAc, followed by further purification over Sephadex LH-20 (hexane- $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 2: 1: 1$) when necessary, allowed the isolation, in order of increasing polarity, of delphinine (17 mg), bullatine C (14-acetylneoline) ${ }^{7}(1.3 \mathrm{~g})$, chasmanine ${ }^{9}(300 \mathrm{mg})$, 14 -acetylchasmanine ${ }^{9}\left(450 \mathrm{mg}\right.$), and neoline ${ }^{7}$ (525 mg). The neutral aqueous phase was basified with $20 \% \mathrm{NaOH}$ to pH 12 and extracted with CHCl_{3} to give a crude alkaloidal material (6.4 g). This residue was chromatographed over $\mathrm{Al}_{2} \mathrm{O}_{3}$ and eluted with hexane-EtOAc (1:1) (3L), EtOAc (2.5L), and $\mathrm{MeOH}(2 \mathrm{~L})$ to give three fractions: $\mathrm{F}_{1}(2.3 \mathrm{~g}), \mathrm{F}_{2}(1.8 \mathrm{~g})$, and $\mathrm{F}_{3}(2.2 \mathrm{~g})$. Repeated chromatography of the residue (2.3 g) obtained from hexane-EtOAc (1:1) over Sephadex LH-20 (hexane- $\mathrm{MeOH}-\mathrm{CHCl}_{3}, 2: 1: 1$) furnished 93 mg of 19 -oxodihydroatisine (2), 5 mg of 22-O-acetyl-19-oxodihydroatisine (3), and 76 mg of $5 .{ }^{4}$ Fraction F_{2}, after crystallization (EtOAc$\mathrm{MeOH}, 9: 1)$ yiel ded 0.8 g of pure 4. ${ }^{4}$ The mother liquors, after separation of azitine, were rechromatographed on alumina preparative plates (hexane-EtOAc, 2:1, twice). Two bands were cut. The lower zone was extracted with EtOAc to give 7 mg of isoazitine(1). The upper band gave 40 mg of $4 \mathbf{4}^{4}$ F raction F_{3} was a very polar mixture that was not investigated further. Known alkaloids were identified by comparison of mp and spectral data (IR, MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with literature values.

I soazitine (1): resin; $[\alpha]^{25} \mathrm{D}-6.7^{\circ}$ (c $0.63, \mathrm{CHCl}_{3}$); IR $v^{\mathrm{NaCl}^{\text {max }}}$ 3376, 2931, 2866, 1711, 1650, 1459, 1447, 1076, 1057, 910, 731 cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 299 [M] ${ }^{+}$ (100), 284 (18), 272 (6), 256 (14), 242 (8); HREIMS m/z 299.2257 (calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}, 299.2249$).

19-Oxodihydroatisine (2): crystalline, mp 221-223 from $\mathrm{CHCl}_{3} ;[\alpha]^{25} \mathrm{D}-31.2^{\circ}\left(\mathrm{c} 0.57, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} v^{\mathrm{NaCl}_{\max }} 3373,2931$,

2865, 1619, 1445, 1054, 900, $752 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 394 [M] ${ }^{+}$(52), 344 (18), 322 (100), 315 (78), 300 (15); HREIMS m/z 359.2463 (calcd for $\mathrm{C}_{22} \mathrm{H}_{33^{-}}$ $\mathrm{NO}_{3}, 359.2460$).

Acetylation of 2. Compound $2(22 \mathrm{mg})$ was acetylated using 0.5 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 3 drops of pyridine and stirring the solution at room temperature for 6 h . Workup by pouring into cold $\mathrm{H}_{2} \mathrm{O}$, extraction with CHCl_{3}, drying $\left(\mathrm{MgSO}_{4}\right)$, and removal of solvent gave 19 mg of acetylated product. Column chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$) using hexane-EtOAc (6:2) as eluent led to the isolation of 9 mg of $\mathbf{6}$ and 2.5 mg of $\mathbf{3}$. Compound $\mathbf{3}$ was identical (TLC, EIMS, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR) with 22-O-acetyl-19-oxodi hydroatisine also isolated from this plant.

22-O-Acetyl-19-oxodihydroatisine (3): gum; $[\alpha]^{25} \mathrm{D}-35.18^{\circ}$ ($\mathrm{C} 0.54, \mathrm{CHCl}_{3}$); IR $v^{\mathrm{NaCl}}{ }_{\max } 3421,2931,2866,2360,1740,1625$, 1230, $1050753 \mathrm{~cm}^{-1}$; ${ }^{1}$ H and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 401 [M] (37), 359 (9), 358 (24), 341 (100), 328 (47), 315 (21); HREIMS m/z 401.2572 (calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{4}, 401.2566$).

15,22-O-Diacetyl-19-oxodihydroatisine (6): gum; $[\alpha]^{25}$ D -68.75° (c $0.40, \mathrm{CHCl}_{3}$); IR $v^{\mathrm{NaCl}}{ }_{\max } 2932,2868,1739,1638$, 1234, 1045, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 443 [M] ${ }^{+}$(46), 401 (16), 400 (28), 383 (100), 370 (45), 357 (20), 340 (25); HREIMS m/z 443. 2646 (calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{5}$, 443.2671).

Acknowledgment. We thank the (DGES) del Ministerio de Educación y Cultura of Spain (PB97-1265) for financial support.

References and Notes

(1) Benn, M. H.; Jacyno, J. M. Alkaloids. Chemical and Biological Perspectives; Pelletier, S. W., Ed.; J . Wiley: New York, 1983; Vol. 1, Chapter 4.
(2) Pelletier, S. W.; Mody, N. V.; J oshi, B. S. and Schramm, L. C. Alkaloids: Chemical and Biol ogical Perspectives, Pelletier, S. W., Ed.; Wiley-I nterscience: New York, 1984; Vol. 2, p 205.
(3) Pelletier, S. W.; Ross, S. A., Etse, J. T. Heterocycles 1988, 27, 24672473, and references therein.
(4) Desai, H. K.; J oshi, B. S.; Pelletier, S. W.; Sener, B.; Bingöl, F. and Baykal, T. Heterocycles 1993, 36, 1081-1089.
(5) J oshi, B. S.; El-Kashoury, E. S. A.; Desai, H. K.; Holt, E. M.; Olsen, J. D.; Pelletier, S. W. Tetrahedron Lett. 1988, 29, 2397-2400.
(6) Huebner, C. F.; J acobs, W. A. J . Biol. Chem. 1947, 170, 515-525.
(7) de la Fuente, Ğ.; Díaz Acosta, R.; Orribo, T. Heterocycles 1989, 29, 205-208.
(8) Pelletier, S. W.; Moody, N. V. J . Am. Chem. Soc. 1979, 101, 492494.
(9) Atta-ur Rahman. Handbook of Natural Products Data: Diterpenoid and Steroidal Alkal oids; Elsevier: New York, 1990; Vol. 1, pp 39-40.
NP990453L

[^0]: * To whom correspondence should be addressed. Tel.: 34-922-318585 Fax: 34-922-318571. E-mail: jglezd@ull.es.
 † Deceased 1999.

