# Alkaloids from Delphinium staphisagria

Jesús G. Díaz,\* Juan García Ruiz, and Gabriel de la Fuente<sup>†</sup>

Instituto de Bio-Orgánica "A. González", CSIC, Universidad de La Laguna, Ctra a la Esperanza 2, 38206, La Laguna-Tenerife, Spain

Received September 15, 1999

Three new diterpenoid alkaloids, isoazitine (1), 19-oxodihydroatisine (2), and 22-*O*-acetyl-19-oxodihydroatisine (3), and eight known alkaloids—azitine (4), dihydroatisine (5), delphinine, neoline, bullatine C (14-acetylneoline), chasmanine, 14-acetylchasmanine, and the quaternary base atisinium chloride (7)—were isolated from the aerial parts of *Delphinium staphisagria*. Structures of the new alkaloids were established mainly by 1D and 2D NMR spectroscopy, including <sup>1</sup>H COSY, HMQC, HMBC, and ROESY. The <sup>1</sup>H and <sup>13</sup>C NMR data for alkaloids **4** and **5** are also reported.

The majority of the phytochemical studies of the Aconitum, Delphinium, and Consolida genera, the main sources of biologically active diterpenoid alkaloids,<sup>1</sup> have been carried out with species from Asia, Europe, and North America.<sup>2</sup> While searching for new diterpenoid alkaloids, we have investigated Delphinium staphisagria L. (Ranunculaceae), gathered in Morocco. The isolation and structure elucidation of several diterpenoid alkaloids from D. sta*phisagria* were reported in previous papers.<sup>3</sup> Further study of the constituents of this species has now resulted in the isolation of three additional new diterpenoid alkaloids, isoazitine (1), 19-oxodihydroatisine (2), and 22-O-acetyl-19-oxodihydroatisine (3), together with eight known alkaloids. Structures of the new alkaloids were elucidated on the basis of spectral evidence; the known alkaloids were identified by comparison of their spectral data with those in the literature.

### **Results and Discussion**

Isoazitine (1) was isolated as a resin, and the molecular formula, C<sub>20</sub>H<sub>29</sub>NO, was deduced from HRMS. The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 1 and 2) were very similar to those of atisine azomethine (azitine) (4),<sup>4</sup> indicating the structural similarity of the two alkaloids. The <sup>1</sup>H NMR spectrum showed signals characteristic for a tertiary methyl group ( $\delta$  1.07), an exocyclic double bond ( $\delta$  5.10 and 5.04), an imine proton at  $\delta$  7.43, and one secondary hydroxyl group ( $\delta$  3.61). This last should be located next to the exocyclic methylene group to account for the downfield shift of C-16 and C-17 ( $\delta$  156.6 s and 109.7 t) compared to that of azitine (4) ( $\delta$  156.6 s and 109.1 t) and other related compounds.<sup>4</sup> Three-bond correlations obtained from the HMBC experiment (Table 3) showed coupling between protons of the tertiary methyl group ( $\delta$  1.07) and the imine carbon (at  $\delta$  169.0 d), and between the imine proton and the methyl carbon (at  $\delta$  23.7 q) and the methylene carbon (at  $\delta$  55.5 t). Two-bond correlation was also observed between the imine proton and one quaternary carbon ( $\delta$ 38.9 s). The downfield shift of this signal was attributed to C-4 adjacent to a double bond in the form N=C(19).<sup>5</sup> In the HMBC experiment, methylene double bond signals at  $\delta$  5.10 and 5.04 were correlated with the methine carbon resonances at  $\delta$  36.3 and 77.0 (HMQC  $\delta$  2.34 br s and 3.61 br t) and were therefore assigned to C-12 and C-15,

respectively, which corroborated the presence of the secondary hydroxyl group on C-15. Inasmuch as the H-15 signal ( $\delta$  3.61) showed an NOE, with H-17 z and H-14  $\beta$  in the ROESY spectrum, H-15 must be equatorial and  $\alpha$ , with the OH  $\beta$  on C-15. Thus, the structure of isoazitine was assigned as **1**.

Compound 2 was obtained as colorless crystals, mp 221-223 °C. Its molecular formula C22H33NO3 was deduced from the mass spectrum  $[m/z 359 (M^+)]$  and <sup>1</sup>H and <sup>13</sup>C NMR. The <sup>1</sup>H and <sup>13</sup>C NMR spectra revealed the presence of a hydroxyethyl group attached to nitrogen [<sup>1</sup>H NMR  $\delta$  3.58 (H<sub>21</sub>a), 3.51 (H<sub>21</sub>b), 3.83 (H<sub>22</sub>a), 3.79 (H<sub>22</sub>b) and  $^{13}\text{C}$  NMR  $\delta$ 50.8 and 61.7 ], one lactam keto group [IR  $\nu^{\text{NaCl}}_{\text{max}}$  cm<sup>-1</sup> 1619 and  $^{13}\mathrm{C}$  NMR  $\delta$  176.8(s)], an exocyclic methylene group [<sup>1</sup>H NMR  $\delta$  5.10 and 5.04, each (1H, br t, J = 1.5Hz) and <sup>13</sup>C NMR  $\delta$  110.1 and 155.8], an angular methyl, and a secondary hydroxyl group. There was a close resemblance between compound 2 and the known diol dihydroatisine (5) in terms of <sup>13</sup>C NMR spectra (Table 2), indicating that 2 has a similar C<sub>20</sub>-atisane skeleton.<sup>4</sup> The three-bond correlation observed in HMBC (Table 4) between the tertiary methyl group at  $\delta$  1.15 and the ketogroup at  $\delta$  176.8 placed the carbonyl group at C-19. Acetylation of **2** with  $Ac_2O/C_5H_5N$  at room temperature followed by chromatographic purification afforded the diacetate 6 and the monoacetyl derivative 3, the latter being identical with the new alkaloid discussed in the next paragraph. The <sup>1</sup>H NMR of **6** (Table 1) contained signals at  $\delta$  2.13 and 2.02 and the <sup>13</sup>C NMR at  $\delta$  21.3(g), 171.2(s), 20.8 (q), and 170.7(s). The three-proton signal in **2** at  $\delta$  3.83 and 3.79 (HMQC  $\delta$  61.7 t) and the 3.63 br t, (HMQC  $\delta$  76.7 d), which moved downfield after acetylation ( $\delta$  4.34 and 4.23 and 5.13 br t, J = 2 Hz), were assigned to  $H_2-C_{22}$ and H-15, respectively. The existence of a secondary hydroxyl group at C-15 $\beta$  was deduced as in **1**. 19-Oxodihydroatisine (2) was prepared earlier by mild permanganate oxidation of isoatisine;<sup>6</sup> this is the first report of the natural occurrence of this alkaloid.

Comparison of the mass and <sup>1</sup>H NMR spectra of **3** with the spectra of the synthetic diacetate **6** indicated that **3** had a hydroxyl group on C-15 and an acetyl group on C-22 (Table 1). The presence of the acetyl group at C-22 in **3** was corroborated by the long-range correlation observed in the HMBC between the protons attached to C-22 and the carbonyl carbon of the acetyl group.

<sup>\*</sup> To whom correspondence should be addressed. Tel.: 34-922-318585. Fax: 34-922-318571. E-mail: jglezd@ull.es.

<sup>&</sup>lt;sup>†</sup> Deceased 1999.



 $R = O, R_1 = R_2 = H$  $R = O, R_1 = H, R_2 = Ac$  $R = H_2, R_1 = R_2 = H$  $R = O, R_1 = R_2 = Ac$ 

## **Experimental Section**

**General Experimental Procedures.** Melting points, uncorrected, were taken on a Reichert Thermovar apparatus. IR spectrum: Bruker-IFS-55 spectrometer. Optical rotation: Perkin-Elmer-241 polarimeter, 1-dm cell. EIMS and exact mass measurements: Micromass Autospec spectrometer at 70 eV. NMR spectra: Bruker-AMX-400 or Bruker-AMX-500 spec-

Table 1. <sup>1</sup>H NMR Data for Compounds 1–6<sup>*a,b*</sup>

**Table 2.** <sup>13</sup>C NMR Chemical Shift Assignments for Compound $1-6^a$ 

| carbon | 1                    | 2       | 3       | 4                   | 5                   | 6       |
|--------|----------------------|---------|---------|---------------------|---------------------|---------|
| 1      | 41.4 t               | 41.3 t  | 41.4 t  | 34.2 t <sup>b</sup> | 40.2 t <sup>b</sup> | 41.4 t  |
| 2      | 20.2 t               | 20.1 t  | 20.1 t  | 20.0 t              | 23.3 t              | 20.0 t  |
| 3      | 37.6 t               | 39.6 t  | 39.6 t  | 42.4 t <sup>b</sup> | 41.3 t              | 39.6 t  |
| 4      | 38.9 s               | 41.8 s  | 41.8 s  | 32.9 s              | 33.6 s              | 41.7 s  |
| 5      | 47.6 d               | 50.1 d  | 50.2 d  | 46.9 d              | 49.6 d              | 50.3 d  |
| 6      | 19.6 t               | 19.5 t  | 19.6 t  | 19.5 t              | 17.3 t              | 19.4 t  |
| 7      | 31.0 t               | 30.9 t  | 31.0 t  | 30.9 t <sup>b</sup> | 31.4 t <sup>b</sup> | 31.4 t  |
| 8      | 36.4 s               | 37.5 s  | 37.6 s  | 37.3 s              | 37.4 s              | 36.9 s  |
| 9      | 38.4 d               | 37.9 d  | 38.0 d  | 38.0 d              | 39.5 d              | 39.1 d  |
| 10     | 37.6 s               | 36.0 s  | 36.0 s  | 42.5 s              | 38.0 s              | 36.0 s  |
| 11     | 28.4 t               | 28.9 t  | 28.9 t  | 28.0 t <sup>b</sup> | 28.1 t <sup>b</sup> | 28.8 t  |
| 12     | 36.3 d               | 35.9 d  | 36.0 d  | 35.9 d              | 36.3 d              | 35.9 d  |
| 13     | 26.3 t               | 26.4 t  | 26.4 t  | 26.0 t              | 26.3 t              | 26.2 t  |
| 14     | 27.0 t               | 27.2 t  | 27.2 t  | $25.1 t^{b}$        | 27.6 t              | 26.9 t  |
| 15     | 77.0 d               | 76.7 d  | 76.7 d  | 75.8 d              | 77.0 d              | 76.7 d  |
| 16     | 156.6 s              | 155.8 s | 155.8 s | 156.6 s             | 156.7 s             | 150.4 s |
| 17     | 109.1 t              | 110.1 t | 110.2 t | 109.1 t             | 109.8 t             | 111.1 t |
| 18     | 23.7 q               | 23.0 q  | 23.2 q  | 25.9 q              | 26.5 q              | 23.1 q  |
| 19     | 169.0 <sup>°</sup> d | 176.8 s | 174.6 s | 60.7 t              | 60.7 t              | 174.5 s |
| 20     | 55.5 t               | 54.4 t  | 54.5 t  | 165.8 d             | 53.9 t <sup>b</sup> | 54.3 t  |
| 21     |                      | 50.8 t  | 46.4 t  |                     | 60.2 t <sup>b</sup> | 46.4 t  |
| 22     |                      | 61.7 t  | 62.4 t  |                     | 57.9 t <sup>b</sup> | 62.4 t  |
|        |                      |         |         |                     |                     |         |

 $^a$  Resonances for the acetate group in **3** and **6**: 170.7 s, 20.8 q (C\_{22}Ac) and 171.2 s, 21.2 q (C\_{15}Ac). Chemical shifts in ppm ( $\delta$ ) relative to TMS. Carbon multiplicities were determined by DEPT experiments.  $^b$  Indicates values that are revised from those reported earlier.<sup>4</sup>

trometers; CDCl<sub>3</sub>;  $\delta$  values in parts per million relative to internal TMS; *J* values in Hz. Al<sub>2</sub>O<sub>3</sub> Merck (neutral, 200–300 mesh) and Schleicher and Schuell 394 732 was used for column chromatography (CC) and TLC, respectively. Sephadex LH-20, Pharmacia. Spots on chromatograms were detected with Dragendorff's reagent.

| Н         | 1                           | 2                            | 3                       | 4                        | 5                       | 6                       |
|-----------|-----------------------------|------------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
| 1a        | 1.70 m                      | 1.81 m                       | 1.79 m                  | 1.69 br dt (13.2, 2)     | 1.90 br dd (13.5, 6.3)  | 1.79 m                  |
| 1b        | 1.00 m                      | 1.19 m                       | 1.12 m                  | 1.09 dd (15.7, 3)        | 1.14 m                  | 1.15 m                  |
| 2a        | 1.50 m                      | 1.57 m                       | 1.56 m                  | 1.49 dd (13.3, 2.3)      | 2.40 m                  | 1.57 m                  |
| 2b        | 1.27 m                      | 1.51 m                       | 1.41 tt (13.5, 4.5)     | 1.32 dt (13.5, 4.5)      | 1.50 m                  | 1.44 tt (13.5, 4.5)     |
| 3a        | 1.49 m                      | 1.80 m                       | 1.78 m                  | 1.45 ddd (14, 4.5, 2.3)  | 1.70 td (13.5, 5)       | 1.78 td (12, 7)         |
| 3b        | 1.28 m                      | 1.36 td (13.5, 4.5)          | 1.33 td (13.5, 4.5)     | 1.22 br td (13.5, 4.5)   | 1.40 m                  | 1.39 td (13.5, 4.5)     |
| 5         | 0.98 m                      | 1.69 m                       | 1.15 m                  | 1.01 dt (12.5, 2.2)      | 0.99 br dd (11.6, 4.5)  | 1.11 m                  |
| 6a        | 1.56 m                      | 1.68 m                       | 1.68 m                  | 1.60 m                   | 1.52 m                  | 1.66 m                  |
| 6b        | 0.99 m                      | 1.14 m                       | 1.14 m                  | 1.07 br dd (12.2, 3)     | 1.52 m                  | 1.13 m                  |
| 7a        | 1.68 m                      | 1.71 m                       | 1.72 m                  | 1.80 m                   | 1.70 m                  | 1.23 m                  |
| 7b        | 1.12 br dt<br>(13.5, 3)     | 1.47 m                       | 1.16 m                  | 1.13 dt (13.5, 3)        | 1.16 m                  | 1.23 m                  |
| 9         | 1.58 m                      | 1.74 m                       | 1.73 m                  | 1.81 dd (9, 2)           | 1.63 m                  | 1.76 m                  |
| 11a       | 1.72 m                      | 1.73 m                       | 1.74 m                  | 1.75 m                   | 1.60 m                  | 1.82 m                  |
| 11b       | 1.36 ddd<br>(12.5, 7.7, 2)  | 1.12 m                       | 1.19 m                  | 1.75 m                   | 1.40 m                  | 1.19 m                  |
| 12        | 2.34 br s                   | 2.32 br s                    | 2.32 m                  | 2.39 quint (3)           | 2.31 quint (2)          | 2.39 br s               |
| 13a       | 1.57 m                      | 1.62 m                       | 1.62 br t(13)           | 1.60 m                   | 1.60 m                  | 1.68 m                  |
| 13b       | 1.57 m                      | 1.46 m                       | 1.48 m                  | 1.60 m                   | 1.39 m                  | 1.52 m                  |
| 14α       | 2.14 ddd<br>(15, 11, 4.5)   | 2.13 ddd (15, 11.5, 3)       | 2.15 ddd (15, 11.5, 3)  | 1.93 ddd (15, 11, 4.5)   | 2.06 ddd (15, 11.5, 3)  | 2.23 ddd (15, 11.5, 3)  |
| $14\beta$ | 0.92 dddd<br>(15, 11, 7, 2) | 0.97 ddd (15, 12, 7)         | 0.97 ddd (15, 12, 7)    | 0.88 dddd (15, 11, 7, 2) | 0.86 br ddd (15, 12, 7) | 1.12 m                  |
| 15α       | 3.61 br t (2)               | 3.63 br t (2)                | 3.63 br t (2)           | 3.70 br t (2)            | 3.58 br t (2)           | 5.13 br t(2)            |
| 17z       | 5.10 t (1.5)                | 5.10 t (1.5)                 | 5.10 t (1.5)            | 5.10 t (1.5)             | 5.07 t (1.5)            | 5.04 t (1.5)            |
| 17e       | 5.04 t (1.5)                | 5.04 t (1.5)                 | 5.04 t (1.5)            | 5.04 t (1.5)             | 5.01 t (1.5)            | 4.91 t (1.5)            |
| 18        | 1.07 s                      | 1.15 s                       | 1.11 s                  | 0.84 s                   | 0.78 s                  | 1.14 s                  |
| 19a       | 7.43 br s                   |                              |                         | 3.82 d (2.5)             | 2.45 br d (11)          |                         |
| 19b       |                             |                              |                         | 3.82 d (2.5)             | 2.20 dd (11, 2.5)       |                         |
| 20a       | 3.92 dt (19, 2)             | 3.72 dd (13, 1.5)            | 3.76 dd (13, 1.5)       | 7.88 dd (4.5, 2.5)       | 2.77 br d (11)          | 3.77 d (14)             |
| 20b       | 3.42 dd (19, 3)             | 3.12 br d (13)               | 3.09 d (13)             |                          | 2.57 dd (11, 2.5)       | 3.13 d (14)             |
| 21a       |                             | 3.58 ddd (14.5, 6, 4.5, 3.6) | 3.76 ddd (14.5, 6, 4.5) |                          | 2.45 m                  | 3.78 ddd (14.5, 6, 4.5) |
| 21b       |                             | 3.51 ddd (14.5, 7, 4.5, 3.7) | 3.44 ddd (14.5, 7, 4.5) |                          | 2, 45 m                 | 3.46 ddd (14.5, 7, 4.5) |
| 22a       |                             | 3.83 ddd (11.5, 6, 4.5, 3.6) | 4.31 ddd (11.5, 6, 4.5) |                          | 3.62 t (5.5)            | 4.34 ddd (11.5, 6, 4.5) |
| 22b       |                             | 3.79 ddd (11.5, 7, 4.5)      | 4.20 ddd (11.5, 7, 4.5) |                          | 3.62 t (5.5)            | 4.23 ddd (11.5, 7, 4.5) |
| Ac<br>Ac  |                             | · · · · ·                    | 2.02 s                  |                          |                         | 2.02 s<br>2.13 s        |

<sup>a</sup> 500 MHz, CDCl<sub>3</sub>; assignments based on COSY and HMQC. <sup>b</sup> Chemical shifts in ppm relative to TMS; coupling constants (J) in Hz.

**Table 3.** HMQC and HMBC NMR Data for Compounds 1, 4, and  $5^a$ 

|           |         | 1                | 4       |                      | 5       |                  |
|-----------|---------|------------------|---------|----------------------|---------|------------------|
| Н         | HMQC    | HMBC             | HMQC    | HMBC                 | HMQC    | HMBC             |
| 1a        | 41.5 t  | 3, 5             | 34.2 t  | 5, 9, 3              | 40.2 t  | 2, 3, 5, 10      |
| 1b        | 41.5 t  | ,                | 34.2 t  | 5, 9, 3              | 40.2 t  | 2, 3, 20         |
| 2a        | 20.2 t  |                  | 20.0 t  | 1, 3, 5              | 23.3 t  |                  |
| 2b        | 20.2 t  |                  | 20.0 t  | 10                   | 23.3 t  |                  |
| 3a        | 37.6 t  | 5                | 42.4 t  | 1, 2, 5              | 41.3 t  |                  |
| 3b        | 37.6 t  | 2, 19            | 42.4 t  | 2, 4, 5, 18, 19      | 41.3 t  | 1, 2, 4, 19      |
| 5         | 47.7 d  | 6, 7             | 46.9 d  | 4, 6, 20             | 49.6 d  | 4, 10, 6         |
| 6a        | 19.7 t  |                  | 19.5 t  |                      | 17.3 t  |                  |
| 6b        | 19.7 t  | 7, 10            | 19.5 t  | 7, 10                | 17.3 t  |                  |
| 7a        | 31.1 t  | 6, 8             | 30.9 t  |                      | 31.4 t  |                  |
| 7b        | 31.1 t  | 5, 6             | 30.9 t  | 5, 6, 9, 14          | 31.4 t  | 6                |
| 9         | 38.4 d  | 1, 8, 14, 15, 20 | 38.0 d  | 1, 8, 10, 11, 14, 20 | 39.5 d  | 11, 20           |
| 11a       | 28.5 t  | 13               | 28.0 t  |                      | 28.1 t  |                  |
| 11b       | 28.5 t  | 8, 12, 13, 16    | 28.0 t  |                      | 28.1 t  | 10               |
| 12        | 36.3 d  | 9, 14, 15        | 35.9 d  | 9, 14, 15, 16, 17    | 36.3 d  |                  |
| 13a       | 26.3 t  |                  | 26.0 t  |                      | 26.2 t  |                  |
| 13b       | 26.3 t  |                  | 26.0 t  |                      | 26.3 t  |                  |
| 14α       | 27.2 t  | 7, 8, 13, 15     | 25.1 t  | 8, 13, 15            | 27.6 t  |                  |
| $14\beta$ | 27.2 t  | 9, 13, 15        | 25.1 t  | 9, 13, 15            | 27.6 t  | 9                |
| 15α       | 77.0 d  | 7, 9, 14, 16, 17 | 75.8 d  | 7, 9, 12, 14, 16, 17 | 77.0 d  | 8, 9, 14, 16, 17 |
| 17z       | 109.7 d | 12, 15, 16       | 109.1 d | 12, 15, 16           | 109.8 t | 12, 15, 16       |
| 17e       | 109.7 d | 12, 15, 16       | 109.1 d | 12, 15, 16           | 109.8 t | 12, 15, 16       |
| 18        | 23.7 q  | 5, 3, 19         | 25.9 q  | 5, 3, 19             | 26.5 q  | 3, 4, 5, 19      |
| 19a       | 169.0 d | 4, 18, 20        | 60.7 t  | 3, 4, 5, 18, 20      | 60.7 t  | 4, 5, 20         |
| 19b       |         |                  | 60.7 t  | 3, 4, 5, 18, 20      | 60.7 t  | 3, 10, 19        |
| 20a       | 55.5 t  | 1, 9, 19         | 165.8 d | 5, 9, 10, 19         | 53.9 t  | 5, 10, 19        |
| 20b       | 55.5 t  | 1, 5, 9, 19      |         |                      | 53.9 t  | 1, 19            |
| 21a       |         |                  |         |                      | 60.2 t  |                  |
| 21b       |         |                  |         |                      | 60.2 t  |                  |
| 22a       |         |                  |         |                      | 57.9 t  | 21               |
| 22b       |         |                  |         |                      | 57.9 t  | 21               |

<sup>a</sup> Chemical shifts in ppm relative to TMS. C-multiplicities were established by DEPT experiment.

| Fable 4. | HMQC | and HMBC  | NMR Dat       | a for the  | Compound | s 2. 3. | and $6^a$ |
|----------|------|-----------|---------------|------------|----------|---------|-----------|
|          |      | and min o | 1 11/11/ 2000 | a ror crie | compound | · ~, ·, |           |

| 2         |         |                   |         | 3               |         | 6                           |  |  |
|-----------|---------|-------------------|---------|-----------------|---------|-----------------------------|--|--|
| Н         | HMQC    | HMBC              | HMQC    | HMBC            | HMQC    | HMBC                        |  |  |
| 1a        | 41.3 t  | 9                 | 41.4 t  | 5, 9            | 41.4 t  | 5, 9                        |  |  |
| 1b        | 41.3 t  | 5, 10             | 41.4 t  | 20              | 41.4 t  | 20                          |  |  |
| 2a        | 20.1 t  | 3                 | 20.1 t  | 3               | 20.0 t  | 3                           |  |  |
| 2b        | 20.1 t  |                   | 20.1 t  | 3               | 20.0 t  | 3                           |  |  |
| 3a        | 39.6 t  | 1, 5              | 39.6 t  | 2, 4, 5         | 39.6 t  | 5                           |  |  |
| 3b        | 39.6 t  | 2, 4, 19          | 39.6 t  | 2, 4, 5, 18, 19 | 39.6 t  | 2, 4, 19                    |  |  |
| 5         | 50.1 d  | 20                | 50.2 d  | 6, 20           | 50.3 d  | 6, 20                       |  |  |
| 6a        | 19.5 t  | 8                 | 19.6 t  | 5               | 19.4 t  | 5                           |  |  |
| 6b        | 19.5 t  |                   | 19.6 t  |                 | 19.4 t  |                             |  |  |
| 7a        | 30.9 t  |                   | 31.0 t  | 6, 17           | 31.4 t  | 6, 17                       |  |  |
| 7b        | 30.9 t  | 14                | 31.0 t  | 5, 6, 15        | 31.4 t  | 5, 6, 15                    |  |  |
| 9         | 37.8 d  | 1, 12, 14, 15, 20 | 38.0 d  | 11, 15, 20      | 39.1 d  | 1, 14, 15, 20               |  |  |
| 11a       | 28.9 t  |                   | 28.9 t  |                 | 28.8 t  |                             |  |  |
| 11b       | 28.9 t  | 16                | 28.9 t  | 3, 8, 16        | 28.8 t  | 16                          |  |  |
| 12        | 35.9 d  | 15, 14            | 36.0 d  | 14, 15          | 35.9 d  | 9, 15, 14                   |  |  |
| 13a       | 26.4 t  | 8                 | 26.4 t  | 11              | 26.2 t  |                             |  |  |
| 13b       | 26.4 t  | 16                | 26.4 t  | 11, 16          | 26.2 t  | 16                          |  |  |
| 14α       | 27.2 t  |                   | 27.2 t  | 15              | 26.9 t  | 15                          |  |  |
| $14\beta$ | 27.2 t  | 9, 13, 15         | 27.2 t  | 9, 13, 15       | 26.9 t  | 9, 13, 15                   |  |  |
| 15α       | 76.7 d  | 7, 9, 14, 16, 17  | 76.7 d  | 16, 17          | 76.7 d  | 7, 9, 14, 16, 17,CO (171.1) |  |  |
| 17z       | 110.1 t | 12, 15, 16        | 111.0 t | 15, 16          | 111.1 t | 12, 15                      |  |  |
| 17e       | 110.1 t | 12, 15, 16        | 111.0 t | 15              | 111.1 t | 2, 15, 16                   |  |  |
| 18        | 23.0 q  | 4, 5, 19          | 23.1 q  | 4, 5, 19        | 23.1 q  | 4, 5, 19                    |  |  |
| 20a       | 54.4 t  | 1, 10, 19         | 54.3 t  | 19              | 54.3 t  | 1, 10, 19                   |  |  |
| 20b       | 54.4 t  | 1, 5, 10, 19      | 54.3 t  | 19              | 54.3 t  | 1, 5, 10, 19, 21            |  |  |
| 21a       | 50.8 t  |                   | 46.4 t  | 19              | 46.4 t  | 19, 20, 22                  |  |  |
| 21b       | 50.8 t  |                   | 46.4 t  | 19              | 46.4 t  | 19, 20, 22                  |  |  |
| 22a       | 61.7 t  |                   | 62.4 t  | CO (170.7)      | 62.4 t  | 21, CO (170.7)              |  |  |
| 22b       | 61.7 t  |                   | 62.4 t  | CO (170.7)      | 62.4 t  | 21, CO (170.7)              |  |  |
| Ac        |         |                   | 20.8 q  |                 | 20.8 q  |                             |  |  |
| Ac        |         |                   |         |                 | 21.2 q  |                             |  |  |

<sup>a</sup> Chemical shifts in ppm relative to TMS. C-multiplicities were established by DEPT experiment.

**Plant Material.** *Delphinium staphysagria* L. was collected in the spring (1985) outside Tetuán City, Morocco, by Dr. Julián Molero Briones, Botany Department, Faculty of Pharmacy, Universidad de Barcelona, where a voucher specimen (BC 808403) has been deposited.

Extraction and Isolation. Air-dried and powdered plant

material (aerial parts, 2.9 kg) were extracted with 80% EtOH in a Soxhlet. After removing the solvent under vacuum, the ethanolic extract was treated with 0.5 M H<sub>2</sub>SO<sub>4</sub> and filtered. The acidic solution was extracted with CHCl<sub>3</sub> to give a crude material (7.5 g). This was adsorbed on 12 g of neutral alumina and subjected to flash chromatography over 110 g of the same adsorbent. Elution with hexane (3 L), hexane-EtOAc (1:1) (3 L), and MeOH (2 L) gave 1.2, 3.5, and 1.95 g in the respective eluates. The material eluted with hexane gave a gummy residue, which contained no alkaloid. Crystallization of the material eluted with hexane-EtOAc (1:1) gave pure delphinine<sup>7</sup> (2.6 g), which was the major alkaloid isolated. The fraction eluted with MeOH (1.95 g) afforded atisonium chloride 7<sup>8</sup> (1.3 g) after crystallization from EtOAc-MeOH (9:1). The acid aqueous phase was neutralized to pH 7 and extracted with CHCl<sub>3</sub> to give a crude material (9.5 g). Chromatography of this residue on alumina, using gradient elution with hexane-EtOAc, followed by further purification over Sephadex LH-20 (hexane-CHCl<sub>3</sub>-MeOH, 2:1:1) when necessary, allowed the isolation, in order of increasing polarity, of delphinine (17 mg), bullatine C (14-acetylneoline)<sup>7</sup> (1.3 g), chasmanine<sup>9</sup> (300 mg), 14-acetylchasmanine<sup>9</sup> (450 mg), and neoline<sup>7</sup> (525 mg). The neutral aqueous phase was basified with 20% NaOH to pH 12 and extracted with CHCl<sub>3</sub> to give a crude alkaloidal material (6.4 g). This residue was chromatographed over Al<sub>2</sub>O<sub>3</sub> and eluted with hexane-EtOAc (1:1) (3 L), EtOAc (2.5 L), and MeOH (2 L) to give three fractions:  $F_1$  (2.3 g),  $F_2$  (1.8 g), and  $F_3$  (2.2 g). Repeated chromatography of the residue (2.3 g) obtained from hexane-EtOAc (1:1) over Sephadex LH-20 (hexane-MeOH-CHCl<sub>3</sub>, 2:1:1) furnished 93 mg of 19-oxodihydroatisine (2), 5 mg of 22-O-acetyl-19-oxodihydroatisine (3), and 76 mg of 5.4 Fraction F<sub>2</sub>, after crystallization (EtOAc-MeOH, 9:1) yielded 0.8 g of pure 4.4 The mother liquors, after separation of azitine, were rechromatographed on alumina preparative plates (hexane-EtOAc, 2:1, twice). Two bands were cut. The lower zone was extracted with EtOAc to give 7 mg of isoazitine (1). The upper band gave 40 mg of 4.<sup>4</sup> Fraction F<sub>3</sub> was a very polar mixture that was not investigated further. Known alkaloids were identified by comparison of mp and spectral data (IR, MS, <sup>1</sup>H and <sup>13</sup>C NMR) with literature values.

**Isoazitine (1):** resin;  $[\alpha]^{25}_{D}$  – 6.7° (*c* 0.63, CHCl<sub>3</sub>); IR  $\nu^{\text{NaCl}}_{\text{max}}$ 3376, 2931, 2866, 1711, 1650, 1459, 1447, 1076, 1057, 910, 731 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Tables 1 and 2); EIMS *m*/*z* 299 [M]<sup>+</sup> (100), 284 (18), 272 (6), 256 (14), 242 (8); HREIMS m/z299.2257 (calcd for  $C_{20}H_{29}NO,$  299.2249).

19-Oxodihydroatisine (2): crystalline, mp 221-223° from CHCl<sub>3</sub>;  $[\alpha]^{25}_{D}$  –31.2° (*c* 0.57, CHCl<sub>3</sub>); IR  $\nu^{\text{NaCl}}_{\text{max}}$  3373, 2931,

2865, 1619, 1445, 1054, 900, 752 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Tables 1 and 2); EIMS *m*/*z* 394 [M]<sup>+</sup> (52), 344 (18), 322 (100), 315 (78), 300 (15); HREIMS m/z 359.2463 (calcd for C22H33-NO<sub>3</sub>, 359.2460).

Acetylation of 2. Compound 2 (22 mg) was acetylated using 0.5 mL of Ac<sub>2</sub>O and 3 drops of pyridine and stirring the solution at room temperature for 6 h. Workup by pouring into cold H<sub>2</sub>O, extraction with CHCl<sub>3</sub>, drying (MgSO<sub>4</sub>), and removal of solvent gave 19 mg of acetylated product. Column chromatography (neutral Al<sub>2</sub>O<sub>3</sub>) using hexane-EtOAc (6:2) as eluent led to the isolation of 9 mg of 6 and 2.5 mg of 3. Compound 3 was identical (TLC, EIMS, <sup>1</sup>H, and <sup>13</sup>C NMR) with 22-O-acetyl-19-oxodihydroatisine also isolated from this plant.

**22-O-Acetyl-19-oxodihydroatisine (3):** gum;  $[\alpha]^{25}_{D}$  -35.18° (*c* 0.54, CHCl<sub>3</sub>); IR  $\nu^{\text{NaCl}}_{\text{max}}$  3421, 2931, 2866, 2360, 1740, 1625, 1230, 1050 753 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Tables 1 and 2); EIMS m/z 401 [M]+ (37), 359 (9), 358 (24), 341 (100), 328 (47), 315 (21); HREIMS *m*/*z* 401.2572 (calcd for C<sub>24</sub>H<sub>35</sub>NO<sub>4</sub>, 401.2566).

**15,22**-*O*-Diacetyl-19-oxodihydroatisine (6): gum;  $[\alpha]^{25}_{D}$ -68.75° (c 0.40, CHCl<sub>3</sub>); IR  $\nu^{\text{NaČl}}_{\text{max}}$  2932, 2868, 1739, 1638, 1234, 1045, 754 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Tables 1 and 2); EIMS m/z 443 [M]+ (46), 401 (16), 400 (28), 383 (100), 370 (45), 357 (20), 340 (25); HREIMS m/z 443. 2646 (calcd for C<sub>26</sub>H<sub>37</sub>NO<sub>5</sub>, 443.2671).

Acknowledgment. We thank the (DGES) del Ministerio de Educación y Cultura of Spain (PB97-1265) for financial support.

### **References and Notes**

- (1) Benn, M. H.; Jacyno, J. M. Alkaloids. Chemical and Biological Perspectives; Pelletier, S. W., Ed.; J. Wiley: New York, 1983; Vol. 1, Chapter 4.
- (2) Pelletier, S. W.; Mody, N. V.; Joshi, B. S. and Schramm, L. C. Alkaloids: Chemical and Biological Perspectives, Pelletier, S. W., Ed.; Wiley-Interscience: New York, 1984; Vol. 2, p 205.
- (3) Pelletier, S. W.; Ross, S. A., Etse, J. T. Heterocycles 1988, 27, 2467-2473, and references therein.
- (4) Desai, H. K.; Joshi, B. S.; Pelletier, S. W.; Sener, B.; Bingöl, F. and
- (4) Desai, H. K., Joshi, D. S., Feletter, S. W., Scher, D., Bingol, T. and Baykal, T. *Heterocycles* 1993, *36*, 1081–1089.
  (5) Joshi, B. S.; El-Kashoury, E. S. A.; Desai, H. K.; Holt, E. M.; Olsen, J. D.; Pelletier, S. W. *Tetrahedron Lett.* 1988, *29*, 2397–2400.
  (6) Huebner, C. F.; Jacobs, W. A. J. Biol. Chem. 1947, *170*, 515–525.
  (7) Huebner, C. P.; Desaid, M. S. Biol. Chem. 1947, *170*, 515–525.
- de la Fuente, G.; Díaz Acosta, R.; Orribo, T. Heterocycles 1989, 29, (7) 205-208.
- (8) Pelletier, S. W.; Moody, N. V. J. Am. Chem. Soc. 1979, 101, 492-494
- Atta-ur Rahman. Handbook of Natural Products Data: Diterpenoid (9)and Steroidal Alkaloids; Elsevier: New York, 1990; Vol. 1, pp 39–40.

#### NP990453L